首页> 外文OA文献 >Representing and evaluating ultrasonic maps using active snake contours and Kohonen's self-organizing feature maps
【2h】

Representing and evaluating ultrasonic maps using active snake contours and Kohonen's self-organizing feature maps

机译:使用活动的蛇形轮廓和Kohonen的自组织特征图来表示和评估超声图

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Active snake contours and Kohonen's self-organizing feature maps (SOMs) are employed for representing and evaluating discrete point maps of indoor environments efficiently and compactly. A generic error criterion is developed for comparing two different sets of points based on the Euclidean distance measure. The point sets can be chosen as (i) two different sets of map points acquired with different mapping techniques or different sensing modalities, (ii) two sets of fitted curve points to maps extracted by different mapping techniques or sensing modalities, or (iii) a set of extracted map points and a set of fitted curve points. The error criterion makes it possible to compare the accuracy of maps obtained with different techniques among themselves, as well as with an absolute reference. Guidelines for selecting and optimizing the parameters of active snake contours and SOMs are provided using uniform sampling of the parameter space and particle swarm optimization (PSO A demonstrative example from ultrasonic mapping is given based on experimental data and compared with a very accurate laser map, considered an absolute reference. Both techniques can fill the erroneous gaps in discrete point maps. Snake curve fitting results in more accurate maps than SOMs because it is more robust to outliers. The two methods and the error criterion are sufficiently general that they can also be applied to discrete point maps acquired with other mapping techniques and other sensing modalities. © Springer Science+Business Media, LLC 2010.
机译:主动蛇形轮廓和Kohonen的自组织特征图(SOM)用于高效紧凑地表示和评估室内环境的离散点图。开发了通用误差准则,用于基于欧几里得距离度量比较两组不同的点。可以选择以下点集:(i)使用不同的制图技术或不同的传感方式获取的两组不同的地图点;(ii)两组通过不同的映射技术或传感方式提取的地图拟合曲线点;或(iii)一组提取的地图点和一组拟合的曲线点。误差标准使得可以将使用不同技术获得的地图的准确性与绝对参考进行比较。使用参数空间的均匀采样和粒子群优化提供了选择和优化活动蛇形轮廓和SOM参数的指南(粒子群优化算法(PSO)根据实验数据给出了超声映射的演示示例,并与非常精确的激光图进行了比较,认为这两种技术都可以填补离散点图中的错误间隙; Snake曲线拟合比SOM可以生成更精确的图,因为它对异常值的鲁棒性更强;这两种方法和误差准则都足够通用,因此也可以应用到使用其他映射技术和其他感应方式获取的离散点图©Springer Science + Business Media,LLC 2010。

著录项

  • 作者

    Altun, K.; Barshan, B.;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 English
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号